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Abstract 

There is an increasing demand for accurate and robust positioning in many application 

domains, such as the unmanned aerial vehicle (UAV) and autonomous driving vehicles 

(ADV). The integration of visual odometry and inertial navigation system (INS) is 

extensively studied to fulfill the positioning requirement. The visual odometry can 

provide aided positioning by matching consecutive frames of images. However, it can 

be sensitive to illumination conditions and features availability in urban environment. In 

this paper, we propose to evaluate the performance of tightly coupled visual/inertial 

integrated positioning in a typical urban scenario of Hong Kong based on existing 

state-of-the-art visual/inertial integration algorithm. The performance of visual/inertial 

integrated positioning is tested and validated in a typical urban scenario of Hong Kong 

which includes numerous dynamic participants, vehicles, pedestrians and trunks. The 

result shows that the visual/inertial integration can be affected in scenes with excessive 

dynamic objects 
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1. Introduction 

Accurate and robust positioning is significant for the unmanned aerial vehicle (UAV) [1] 

and autonomous driving vehicles (ADV) [2] in an urban area. The integration of visual 

odometry [3] and inertial navigation system (INS) is extensively studied to fulfill the 

positioning requirement. The visual/inertial integrated positioning method is a 

promising solution for autonomous systems. The visual odometry can use camera 

images extracted feature points and match them with previous frames to provide aided 

positioning [4]. However, it can be sensitive to illumination conditions and features 
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availability. The low-cost inertial navigation system could provide high-frequency 

attitude and acceleration measurements. The recently proposed tightly coupled 

visual/inertial integration method [5] can obtain prominent positioning performance in 

constraint scenarios with enough environment features and ideal illumination conditions. 

The factor graph [6] is employed to integrate the visual odometry, visual loop closure [5] 

and INS raw measurements. At present, the main methods of Visual Odometry are 

divided into two parts based on feature points and direct methods without features. 

Based on the former, a method proposed to reduce the noise effects in the sequential 

trajectory reconstruction process, which could improve the accuracy in the feature 

points matching [7]. The Direct Sparse Odometry (DSO) is a visual odometry based on 

a direct structure and motion formulation, so it can sample pixels from all image regions 

with intensity gradient [8]. Unfortunately, the sole visual odometry are not robust to 

light conditions, dynamic changes, image conditions and the motion estimate still drifts 

without loop closure. These factors make localization difficult in outdoor environments 

[9-11]. However, the performance of visual/inertial integration can be challenged or 

degraded in a scenario with excessive dynamic objects. Since the violation of geometric 

constraints in a dynamic environment, and the optical flow characteristic will be 

affected [12]. 

 

In this paper, we propose to evaluate the performance of tightly coupled visual/inertial 

integrated positioning in a typical urban scenario of Hong Kong based on the work in 

[5]. The tested scenario can have numerous dynamic participants, vehicles, pedestrians 

and trunks, etc. Firstly, the state-of-the-art INS pre-integration technique [13] is 

employed to get the transformation between consecutive frames INS raw measurements 

to derive the INS factor. Then the feature-based visual odometry is conducted based on 

features matching to derive the visual odometry factor. Finally, we make use of the 

Ceres [14] to solve the factor graph optimization to get the optimal estimation of the 

positioning state set. The performance of visual/inertial integrated positioning is tested 

and validated in a typical urban scenario of Hong Kong. The result shows that the 

visual/inertial integration can be affected in scenes with excessive dynamic objects. 

 

The main contributions of this paper are listed as follows: 

1) We evaluate the performance of visual/inertial integrated positioning system in an 

urban scenario of Hong Kong with numerous dynamic objects. 

2) We analyze the performance of the visual/inertial integration positioning versus the 

quality of visual feature tracking. 

The rest of paper is organized as following: we discuss the methodology in Section 2 

based on the VINS-Fusion framework. The performance analysis is shown in Section 3. 

Finally, the conclusion of this research is summarized in Section 4.  
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2. Methodology 

The evaluated visual/inertial integrated positioning framework is based on the work in 

[5]. The flowchart is shown in Figure 1. The inputs are the sensor measurements from 

IMU and images from monocular camera. This system starts from raw measurements 

pre-processing of camera and IMU. And then the initialization provides all necessary 

values for nonlinear optimization. During the initialization, the loosely coupled sensor 

fusion is used to obtain the initial value. Firstly, the pure visual estimation of the pose of 

all the frames in the sliding window is performed by SFM, and then aligned with the 

IMU pre-integration, therefore obtaining the attitude, velocity, gravity vector and 3D 

feature location. The output is the position and orientation estimation. The detail of the 

evaluated visual/inertial integrated positioning algorithm can be found in [5]. We 

evaluate this technique on vehicle localization in deep urban area. 

 

Fig. 1. Flowchart of the evaluated visual/inertial positioning system. 

3. Experiment Results  

a) Experiment Setup 

The sensor setup is shown in the left-hand side of Figure 2 and the data is collected on 

12th, April 2019. The IMU (Xsens Mti 30) is used to collect the high-frequency attitude 

and acceleration measurements. The monocular camera is used to capture consecutive 

images. Both IMU and camera are installed on top of a vehicle. The reference trajectory 

is provided by NovAtel SPAN-CPT (RTK GNSS/INS integrated positioning system). A 

dynamic experiment is conducted in an urban scenario in Hong Kong. The yellow curve 

in right-hand side of Figure 2 shows the tested trajectory.  

 
The tested scenarios are shown in Figure 3. We can find that the illumination is varable 

during the test which can introduce significant challenge. The dynamic vehicles are 

passing through which can severely distort the performance of feature tracking process 

[5]. In short, the illumination and dynamic objects are the two major challenges. We 

believe that the evaluated scenarios can really be a challenging case for visual/inertial 

integrated positioning which is crucial for autonomous driving. 
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Fig. 2. The experiment setup 

 

Fig. 3. Snapshots of the evaluated scenarios with numerous dynamic objects 

b) Performance analysis   

In this paper, we focus on analyzing the performance of the existing state-of-the-art 

visual/inertial integrated positioning performance in urban canyons.  

 

In order to evaluate the performance of visual/inertial integrated positioning system, 

three aspects are analysed:  

1) 2D positioning error VS velocity error: this part analyses the relationship between 

the 2D positioning error and the velocity error of visual/inertial integrated 

positioning. 

2) 2D positioning error VS mean number of features tracking [5]: this part analyses 

the impact of average number of times each visual feature is tracked in each key 

frame for 2D positioning [5]. For more details of feature tracking can be found in 

[5]. 
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3) 2D positioning error VS feature track difference: this part analyses mean number of 

features tracking difference between two consecutive frames which indicates the 

current features tracking number of times minus the one at last time 

 

The trajectories of the visual/inertial and reference positioning are shown in Figure 4. 

Table I shows the 2D positioning performance of the evaluated visual/inertial integrated 

positioning system. The red curve represents the reference trajectory and the green 

curve represents the positioning from evaluated visual/inertial integrated positioning. 

Firstly, 34.21 meters of mean positioning error is obtained based on the evaluated 

method with a standard deviation of 15.49 meters. Moreover, the maximum error 

reaches 67.32 which is not acceptable for autonomous driving vehicle localization. The 

second column shows the 2D velocity error during the experiment. The mean error and 

standard deviation are 0.92 and 0.79 respectively. The detailed results of 2D positioning 

error and velocity error can be found in Figure 5. The third column shows the mean 

number of feature tracking with mean error of 35.56 and a standard deviation of 49.31 

respectively. The last column shows mean number of feature tracking difference during 

the experiment with mean error and standard deviation are 5.72 and 9.29 respectively. 

TABLE I 

POSITIONING PERFORMANCE OF THE EVALUATED VISUAL/INERTIAL INTEGRATED POSITIONING 

Items 2D error 2D velocity error 
mean number of 

feature tracking 

Mean number of 

feature tracking 

difference 

Mean error 34.21m 0.92 35.56 5.72 

Std 15.49 0.79 49.31 9.29 

Maximum 

error 
67.32 4.13   

 

Fig. 4. The trajectories of the visual/inertial positioning (green curve) and reference 



 6 

trajectory (red curve). 

As the Figure 5 shows, the top panel shows the reference and VIO velocity and the 

bottom panel shows the 2D positioning error. We find that the 2D error increases 

significantly during epoch 20 to 60 and 100 to 200 when 2D velocity error is more than 

0.92 (mean error). Moreover, when the VIO velocity during epoch 330 to 350 is more 

than 10, the 2D error also increases slightly. In short, the performance of the 

visual/inertial integrated positioning is correlated with the reference and VIO velocity. 

 

Fig. 5. Positioning error VS reference and VIO velocity 

As the Figure 6 shows, the top panel shows the mean number of feature tracking and the 

bottom panel shows the 2D positioning error. We find that the bottom panel 2D error 

increases significantly during epoch 100 to 200 when mean number of feature tracking 

is limited (less than 20). As the Figure 3 shows, many dynamic objects and the 

illumination environment cause the features decrease. Moreover, when the velocity is 

zero (the vehicle stops), mean number of feature track rises significantly (epoch 70~80 

and 270~330). In short, the performance of the visual/inertial integrated positioning is 

correlated with the number of feature tracking. 
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Fig. 6. Positioning error VS mean number of feature tracking 

As the Figure 7 shows, the top panel shows the mean number of feature tracking 

difference and the bottom panel shows the 2D positioning error. We find that the bottom 

panel 2D error increases dramatically during epoch 20 to 60 when mean number of 

feature tracking difference changed significantly (more than 50). Interestingly, when the 

2D error is very large during epoch 100 to 200, the feature tracking difference fluctuates 

slightly. As the Figure 3 shows, many moving objects affect the number of features over 

the period (less than 20). In short, the performance of the visual/inertial integrated 

positioning is correlated with the number of feature tracking difference. 

 

Fig. 7. Positioning error VS mean number of feature tracking difference 
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In conclusion, the performance of visual/inertial is affected by these factors: the velocity 

between reference and VIO, mean number of feature tracking, mean number of feature 

tracking difference. More importantly, numerous dynamic objects in the road will 

reduce the features tracking number and lead to heavy 2D positioning error. In the 

future, we plan to use YOLO, which is a real-time object detection system, to detect the 

moving objects and then remove them. 
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